BirZeit University
 Faculty of Science-Department of Physics
 Quantum Mechanics Phys635
 Spring 2016
 Second Exam, May. 5th 2016

1. Write xy, as components of a spherical (irreducible) tensor of rank 2. Evaluate

$$
e<\alpha, j, m^{\prime}|x y| \alpha, j, m>
$$

2. We are to add angular momenta $j_{1}=1$ and $j_{2}=1$ to form $\mathrm{j}=2,1$, and 0 states. Using either the ladder operator method or the recursion relation, express all nine $\mid j m>$ eigenkets in terms of $\mid j_{1} m_{1} j_{2} m_{2}>$.
3. A beam of excited hydrogen atoms in the 2 s state passes between the plates of a capacitor in which a uniform electric field E exists over a distance L . The hydrogen atoms have velocity v along the x -axis and the E field is directed along the z -axis. All the $\mathrm{n}=2$ states of hydrogen are degenerate in the absence of the E field, but certain of them mix when the field is present.
(a) Which of the $\mathrm{n}=2$ states are connected in first order via the perturbation?
(b) Find the linear combination of $\mathrm{n}=2$ states which removes the degeneracy as much as possible.
(c) For a system which starts out in the 2 s state at $\mathrm{t}=0$, express the wave function at time $\mathrm{t} \leq \frac{L}{v}$.
(d) Find the probability that the emergent beam contains hydrogen in the various $\mathrm{n}=2$ states.
4. A spin- $\frac{1}{2}$ particle of mass m moves in spherical harmonic oscillator potential $V=\frac{1}{2} m \omega^{2} r^{2}$ and is subject to an interaction $\lambda \sigma \cdot r$. The net Hamiltonian is therefore:

$$
\begin{array}{r}
H=H_{0}+H_{1} \\
H_{0}=\frac{P^{2}}{2 m}+\frac{1}{2} m \omega^{2} r^{2} \\
H_{1}=\lambda \sigma \cdot r
\end{array}
$$

(a) What is the shift in energy for the ground state through first order in perturbation H_{1}.
(b) Compute the shift of the ground state energy through second order in the perturbation H_{1}.

